지구의 시간을 되돌리는 기업

회 사 소 개 서

폐배터리에 지엠텍의 기술력으로 새 생명을 불어넣는 일, 업사이클링과 리사이클링을 모두 아우르는 말, 우리는 이것을 '리본' 이라 부릅니다.

폐배터리를 '리본' 하여 지구의 시간을 되돌리는 일 바로 지엠텍이 하는 일입니다.

김천산업단지, 칠곡산업단지 위치

이차전지 재사용 ·재활용 전문기업

회 사

공 정

기 술

제 풀

회사개요

연혁 사업분0i .

회사개요 SUMMARY 설 립 일 : 2007.01.01

소 재 지 : 경북 김천산업단지 / 구미 칠곡산업단지

매 출 액 : 약 280억원(2022년 기준)

업 종 : 폐기물 종합 재활용, 기초 무기화학제조업

인 증: ISO, 기업부설연구소, 녹색 기술 인증

성일하이텍 대주주 변경으로 새로운 도약을 준비

2007년 설립/2023년 지엠텍-지엠머티리얼즈 합병

회 사

회사개요

사업분야

연혁

공 정

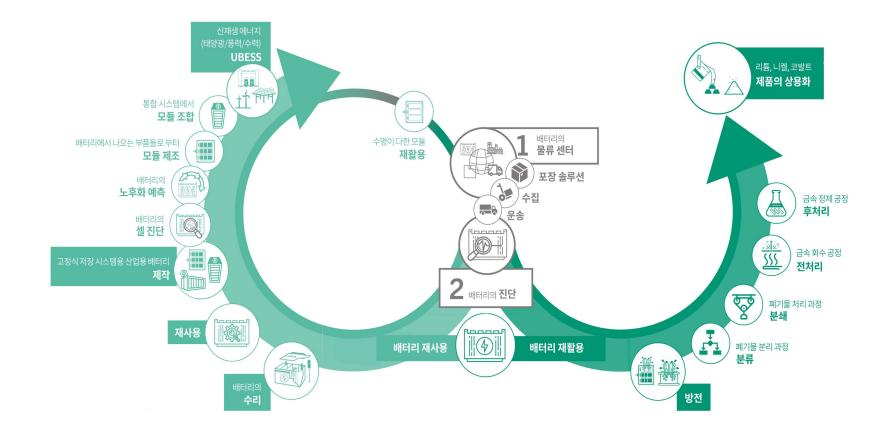
기 를

제 퓯

지엠텍-지엠머티리얼즈 합병

이차전지 재사용 ·재활용 전문기업

이차전지 리본(REBORN) 시스템 구축


회 사

2 정

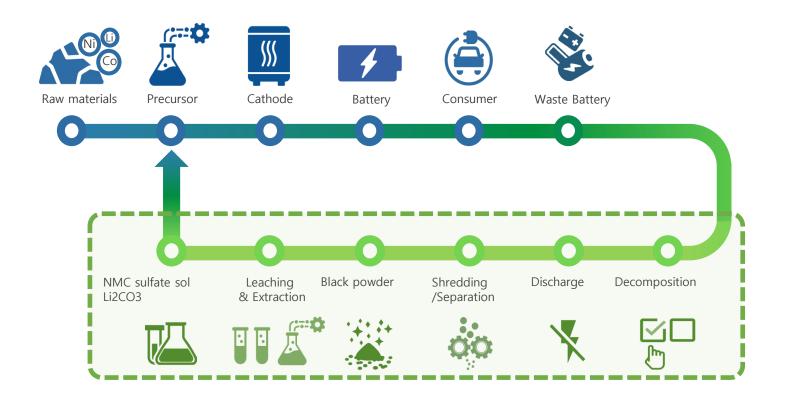
기 술

제 품

회사개요 연혁 **사업분0**

이차전지 재사용 ·재활용 전문기업

이차전지 리본(REBORN) 시스템 구축


회 사

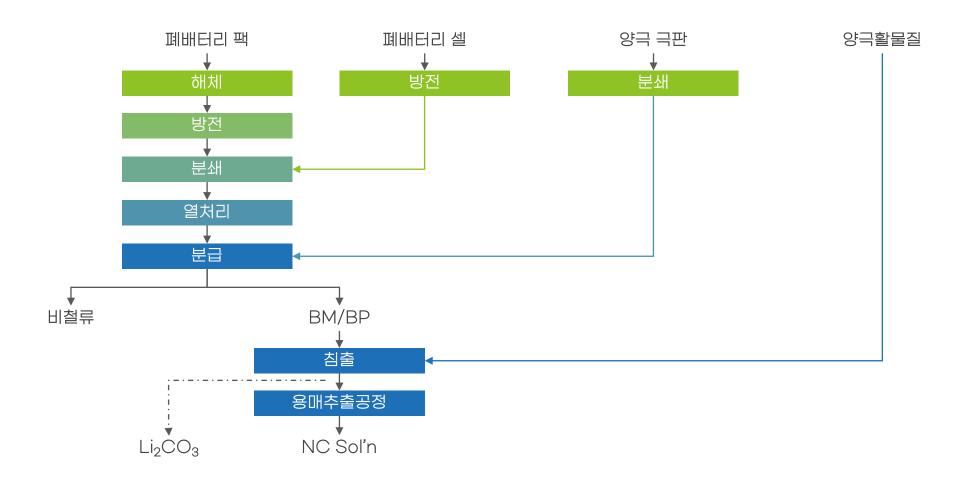
급 정

기 술

제 품

회사개요 연혁 **사업분0**

주요공정


회 사

공 정

기 술

제 푿

주요공정 생산CAPA

회 사

공 정

기 설

제 품

주요공정

생산CAPA

생산 Capacity

공정	Capacity
배터리팩 해체	200톤/윌(4,000ea/윌)
ВР	현재 : 셀 120톤/윌(BP 72톤/윌) 2024. 7 ~ : 셀 500톤/윌(BP 300톤/윌)
NMC복합액	현재 : 300톤/월 2024. 5 ~ : 800톤/월
탄 산 리 튬	2023. 5 ~ : 20톤/월 2024. 5 ~ : 100톤/월

사

정

술

품

기

제

전처리부터 소재화까지 1STOP

핵심기술

배터리 전처리 기술

- 고효율 고안정 배터리 전처리기술 업계최고수준의 금속 회수율

유가금속 정제 분리 기술

- 다년간의 정제기술 축적 원료소재로의 공급경험 다수

소재화기술

- 회수자원의 고부가가치화
- 고순도 소재화기술

핵심기술

기술개발 특허 인증

이차전지 자원순환 플랫폼 (리본 시스템)

가격경쟁력

고품질, Low impurities

안정적인 공급

수행 과제를 통한 기술개발

R&D 정부과제 수행 현황

회 사

공

기 술

제 퓯

핵심기술

기술개발

특허 인증

과제명	개발기간	관련기관	비고
폐리튬이온전지의 코발트 회수 및 2차전지용 cobalt 화합물 제조	2014.08~2015.07	KMC	완료
폐니켈계 전지로부터 고품위 니켈분말(≥99.9% 급) 제조 기술 개발	2016.12~2019.09	㈜나노기술 고등기술 연구원	완료
폐니켈수소전지를 활용한 3N 급 희토류/ 유가금속 회수 및 리튬이온 전지용 양극활물질 소재화 기술개발	2017.04~2019.12	㈜모노리스 고등기술연구원 자동차부품연구원	완료
리튬이차전지 제조 공정 폐액으로부터 리튬화합물의 회수 및 고순도화 기술 개발	2019.04~2021.12	㈜엘엔에프 고등기술연구원	완료
철강공정 부산물 인프라 활용 희토류 재활용 기술 개발	2021.04~2023.12	포항산업과학연구원 고등기술연구원	수행중
전지 순환자원을 활용한 리튬전지용 NCM (Ni 함량 80% 이상) 상용 전구체 개발	2021.04~2022.03	고등기술연구원	완료

RE:BORN BATTERY SPECIALIST

지적재산권 등록 현황

회

술

핵심기술 기술개발 특허

인증

제목 번호 등록 황산코발트 용액으로부터 탈륨의 제거방법 10-2009-0109762 등록 테레프탈산(TPA) 폐촉매로부터 코발트 망간 회수 방법 10-2003-0083208 등록 등록 코발트화합물의 제조방법 및 이를 이용한 이차전지용 양극활물질의 제조방법 10-2004-0017472 폐리튬 이차전지로부터 코발트 파우더의 회수장치 및 회수방법 10-2005-0027670 등록 폐 니켈-카드뮴 전지를 이용한 카드뮴 회수 방법 10-2017-0108635 등록 저급 탄산리튬 재결정화를 통한 고순도 탄산리튬 제조 방법 10-2022-0139651 출원 리튬 폐액으로부터 리튬을 회수하는 방법 10-2022-0106804 출원 폐리튬이차전지를 이용한 양극활물질 전구체 제조 방법 10-2022-0066093 등록

특허청

특허청장 COMMISSIONER KOREAN INTELLECTUAL PROPER 기 승리

특허청

특허청

특허청장

박원구

특허청

인증 현황

회 사

공 정

기 술

핵심기술 기술개발

특허

인증

제 품

중소벤처기업부

RE:BORN BATTERY SPECIALIST

NC Sulfate Solution

BI	ac	K F	Powd	ler/	BI	ack	Mas	S
----	----	-----	------	------	----	-----	-----	---

Element	Un	Unit		Result Spec.	
Ni	wt%	mol%	8.48	79.94	79.00±2.00
Со	wt%	mol%	2.14	20.06	20.00±1.00
Mn	wt%	mol%	0	0	1.00±1.00
NCM Total	wt'	%	10	.61	Min 10.0
Al	pp	m	N	.D	Max 1
As	pp	m	N	.D	Max 1
Ca	pp	m	3.	.5	Max 5
Cd	pp	m	N.D		Max 1
Cr	pp	m	N	.D	Max 1
Cu	ppm		N.D		Max 1
Fe	ppm		N.D		Max 1
K	ppm		1.7		Max 10
Li	pp	ppm		.6	Max 200
Mg	ppm		Mg ppm 0.3		Max 5
Na	pp	ppm		7.8	Max 3,000
Pb	ppm		N.D		Max 1
Si	pp	ppm			Max 5
Ti	pp	ppm		.D	Max 1
Zn	pp	ppm		.D	Max 1

ppm

N.D

3.8

1.352/30

N.D

Max 1

3~4

N.D

Ni-Co Sulfate Solution

- 리튬 이온 전지 에서 이용되는 배터리 양극재의 주원료로 니켈, 코발 트, 망간(Manganese) 등이 가루 형태로 혼합된 검은색 분말입니다.
- 고객사 니즈에 따라 금속 비율을 조절해 생산 가능합니다.

회 사

공 정

제 품

NC NMC LC

Zr

рΗ

Density 불용분

TECH REBORN BATTERY SPECIALIST

NCM SO₄

NMC Sulfate Solution

			Ni-Mn-Co Sulfate Solution		
Element	Un	it	Re	sult	Spec.
Ni	wt%	mol%	8.18	-	-
Со	wt%	mol%	1.59	-	-
Mn	wt%	mol%	1.08	-	-
NCM Total	W†°	%	10	.85	Min 10.0
Al	pp	m	\sim	ID	Max 2
As	pp	m	\sim	ID	-
Ca	pp	m	8.5		Max 30
Cd	pp	m	ND		-
Cr	ppm		_	ID	Max 2
Cu	ppm		_	ID	Max 2
Fe	ppm		_	ID	Max 2
K	ppm		6	.0	Max 10
Li	ppm		115		Max 400
Mg	pp	m	6.2		Max 15
Na	pp	ppm		517	Max 3500
Pb	pp	ppm		ID	-
Si	pp	m	3	.0	Max 20
Ti	ppi	m		ID	-
Zn	pp	m		ID	Max 2
Zr	pp	m		ID	-

4.9 1.370/40

ND

Min 1.328

- 습식 정제법을 통하여 생산하는 고순도 니켈-코발트-망간 황산복함염 입니다.
- xEV 및 ESS 로부터 유가금속을 회수 정제하여, 고객사 니즈에 따라 금속 비율을 조절해 생산 가능합니다.

회 사

공 정

기 설

제 품

NC **NMC**

LC

рΗ

Density 불용분

RE:BORN BATTERY SPECIALIST

Lithium Carbonate

탄산 리튬((Li2CO3)
--------	----------

Eleme nt	Unit	Result	Spec.	Result	Spec.	rest Method	•	리튬은 전기차와 에너지저장장치 뿐만 아니라, 모바일 및 소형기
Li ₂ CO ₃	wt%	98.6		99.9		Titration		기에 사용되는 배터리, 유리, 첨가제 등 다양한 목적으로 사용이

ICP

Titration

Dry Oven 130°

C x 2hrs

가능합니나.

리튬 이온 전지에 이용되는 핵심 원료 중의 하나 입니다.

Landy a 1 2 Margarita	U
SMIBHO	

사

품

NC NMC LC

Na

Ni

Co

Mn

Fe

Αl

Cu

Zn

Ca

Mg

K

Si

Cl⁻

S

SO4²⁻

Particl

e Size

Moistu

re

ppm

μm

%

Li₂CO₃ -1

921

1.0

ND

ND

2.7

2.1

ND

ND

21

31

5.7

17

ND

1200

0.1

Li₂CO₃ - 2

210

ND

ND

ND

2.1

3.1

ND

ND

8.4

1.1

5.3

10

ND

52

0.1

